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Motivation 
• Recent experiment demonstrate that 

dust may have significant impact on 

edge plasmas 

• Can dust injection be used for edge 

plasma control instead of gas impurity 

seeding? 

Saito K, et al., J. Nucl. Mater., vol. 363-365, p. 1323, 2007. 

D.K. Mansfield et al., PSI-19, San Diego, CA 2010 (to be published J. Nucl. Mater.) 

 

Radiation mantle in NSTX Dust spark in LHD 

2 



Motivation 

• Why to inject dust? 

 

– Many low-Z elements (Li, Be, B, C) are solid  under normal 

conditions 

 

– Due to large inertia and very small charge-to-mass ratio dust 

transport is very different from conventional impurity transport 

 

– Additional control is allowed by variation of dust/droplet size and 

speed 

3 



Outline 

 

• DUSTT/UEDGE coupled code 

– Coupling scheme 

– Code validation using 3D reconstructed dust trajectories 

 

• Dust injection in ITER 

– Divertor impurity radiation profiles 

– Divertor plate heat load 

– Effects on edge plasma stability 

– Dust vs gas injection comparison at different locations 

 

• Modeling of lithium dust injection in NSTX 

– Dust impact on pressure gradient 
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DUSTT/UEDGE coupled code 

• DUSTT solves coupled dust dynamics 
equations including temporal evolution of 
dust charge, temperature, mass, and 
radiation 

• The DUSTT code operates with plasma 
parameters simulated with multi-fluid edge 
plasma transport code UEDGE 

• The statistical averaging over an 
ensemble of test dust particles is used to 
obtain dust profiles and impurity source 
from ablated dust 

• DUSTT/UEDGE are iteratively coupled for 
self-consistent modeling of dust impact on 
edge plasmas 

• Present modeling is limited to 2D 
toroidally symmetrical plasmas 

DUSTT (MC) 

UEDGE (fluid) 

BASIS framework 

 geometry, 

   plasma 

parameters 

  source of 

dust ablated 

  impurities 
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Code validation 

• The experimental trajectories are compared with the DUSTT 
simulated ones using plasma parameters modeled with UEDGE 

 Li dust trajectories in NSTX 
Experiment Modeling 

dust speeds  

~10-100m/s 

matched for dust 

sizes 10-20μm 

Li dust lifetime 

~10ms, some grains 

can reach separatrix 

reproduced with 

introduction of heat 

flux reduction factor 

(~50) approximating 

dust shielding by 

ablation cloud 

dust grains with 

opposite toroidal 

flight directions are 

observed, some 

grains change 

toroidal direction 

(curvature ~few cm) 

shear plasma flows 

in SOL with Mach~1 

can cause change in 

toroidal flight 

direction in near 

separatrix regions 
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Dust injection in ITER  
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Modeling of Carbon dust injection in ITER 

• 10μm carbon dust is injected in the 

outer midplane and outer divertor 

with radial speed 100m/s 

• Equivalent amounts of carbon 

atomic vapor iss injected at the 

same locationbs 

• Core D+ density is 6.0x1013cm-3 

• Divertor plates are carbon with 

recycling coefficient set at close to 

1.0 for hydrogen (high-recycling 

regime) and 0.01 for carbon 

impurities 

• Core heating power 100MW 

• Carbon dust shielding factor for is 

set ~10 
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    Simulated dust/gas  

Injection position in ITER 
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Impurity radiation in ITER divertor  

• Impurity injection in diveror region with rate 1g/s (5x1022 atoms/s) 

• Dust injection significantly increases impurity radiation power losses 

in a large divertor volume across the SOL 

• Gas radiation pattern differs significantly from the dust injection 

case, forming radiation mantle 

• Inner divertor radiation is less affected by dust injection 9 

No seeding Dust injection Gas puffing 



Dust impurity radiation in ITER divertor  

• significant amount of radiation in the dust injection case comes from 

hot plasmas (up to ~100eV) near separatrix 

• CIII, CIV, and CII radiation dominates 

• non-coronal effects may play important role in radiation of dust 

originated impurities 
10 
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Outer divertor plate heat load 
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• The reduction in the peak heat load due to dust injection in both 

divertor and midplane cases, as compared to unseeded case, is ~3 

fold from 15MW/m3 to tolerable 5MW/m3 level 

• vapor results in ~2 fold reduction of the peak divertor heat load only 

when injected in the divertor region 
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Injection in midplane 



-4 -2 0 2 4
10

100

1000

 no inject.

 10   mg/s

 100 mg/s

 1     g/s

 10   g/s

 

 

T
e
, 
e
V

r-r
sep

, cm

Electron temperature at midplane 

-4 -2 0 2 4
10

100

1000

 no inject.

 10   mg/s

 100 mg/s

 1     g/s

 

 

T
e
, 
e
V

r-r
sep

, cm

• Midplane plasma temperature is weekly affected by dust injection in 

divertor for rate up to ~10g/s 

• Gas injection with rates ~1g/s leads to significant far SOL cooling 

Dust injection 
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Impurity seeding in ITER midplane 

• Gas radiates in divertor mostly close to the wall 

• Dust penetrates deeper into SOL plasma at midplane and 

significantly increases impurity radiation in near separatrix region 
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Total impurity radiated power in ITER 

• In all simulated cases, except dust injection in divertor region, 

discharge terminated, when ~10g/s is injected resulting in more than 

~60% of impurity radiated power fraction 

• radiation of dust seeded impurities in divertor region tends to 

saturate at a level below one leading to development of divertor 

thermal instability 
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Injection in midplane 



-100 -50 0 50
0.1

1

10

100

 no inject.

 10   mg/s

 100 mg/s

 1     g/s

 3     g/s

 

 

T
e
, 

e
V

L
par

, m

Parallel temperature profiles 

• Parallel temperature profiles are shown along a magnetic field  

adjacent to separatrix 

• Detached divertor regime preceeds discharge termination in 

midplane dust injection case 
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Dust injection in NSTX  
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Modeling of Li dust injection in NSTX 

• NSTX L-mode LSN configuration is 

modeled 

• ~20μm radius Li dust is injected in 

the upper outer poloidal position 

• Dust hit the plasma with average 

speed ~5m/s and with shifted 

downward cosine angle distribution 

relative to vertical direction 

• Divertor plates are assumed to be 

covered with Li film with recycling 

coefficients set at 0.8 for D  and at 

0.5 for Li (low-recycling regime) 

• Core D+ density is fixed at 

5.1x1013cm-3 

• Core heating power 3MW 

Configuration of modeled 

        Li dust injection 

Li 
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Impact of Li dust on divertor operation 

• The peak power load to the outer divertor plate is significantly 

reduced 

• Broader heat load profile compared to gas injection 

• Complete plasma detachment in the inner divertor at 60mg/s Li 

injection rates is developed 
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Radial pressure gradient profiles for dust 

injection at/above midplane 

• Radial plasma pressure gradients are substantially up to ~40% 

reduced in the edge 

• Peeling/ballooning stability of the edge plasma can be improved, 

suppressing anomalous transport and ELM formation 
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Summary 

 

• The coupled DUSTT - UEDGE code allow self-consistent modeling of 

dust transport and impact on the edge plasmas 

 

• The DUSTT/UEDGE code has been validated using 3D reconstructed 

dust trajectories measured on NSTX 

 

• Dust injection with rates ~ several 10mg/s in modern tokamaks and 

~1g/s  can significantly affects edge plasma parameters, transport and 

stability 

 

• Dust injection is more effective in reduction of the divertor peak heat 

load as compared to gas impurity seeding 

 

• Radiation of impurities seeded by dust injection in divertor region tends 

to saturate leading to thermal stabilization of divertor 
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